Hands-On Recommendation Systems with Python : Start building powerful and personalized, recommendation engines with Python

Hands-On Recommendation Systems with Python : Start building powerful and personalized, recommendation engines with Python

Details

Author(s)
Rounak Banik
Format
Paperback | 146 pages
Dimensions
75 x 92 x 7.87mm | 263.08g
Publication date
31 Jul 2018
Publisher
Packt Publishing Limited
Publication City/Country
Birmingham, United Kingdom
Language
English
ISBN10
1788993756
ISBN13
9781788993753
Bestsellers rank
2,182,111

Description

With Hands-On Recommendation Systems with Python, learn the tools and techniques required in building various kinds of powerful recommendation systems (collaborative, knowledge and content based) and deploying them to the web

Key Features

Build industry-standard recommender systems
Only familiarity with Python is required
No need to wade through complicated machine learning theory to use this book

Book DescriptionRecommendation systems are at the heart of almost every internet business today; from Facebook to Netflix to Amazon. Providing good recommendations, whether it's friends, movies, or groceries, goes a long way in defining user experience and enticing your customers to use your platform.

This book shows you how to do just that. You will learn about the different kinds of recommenders used in the industry and see how to build them from scratch using Python. No need to wade through tons of machine learning theory-you'll get started with building and learning about recommenders as quickly as possible..

In this book, you will build an IMDB Top 250 clone, a content-based engine that works on movie metadata. You'll use collaborative filters to make use of customer behavior data, and a Hybrid Recommender that incorporates content based and collaborative filtering techniques

With this book, all you need to get started with building recommendation systems is a familiarity with Python, and by the time you're fnished, you will have a great grasp of how recommenders work and be in a strong position to apply the techniques that you will learn to your own problem domains.

What you will learn

Get to grips with the different kinds of recommender systems
Master data-wrangling techniques using the pandas library
Building an IMDB Top 250 Clone
Build a content based engine to recommend movies based on movie metadata
Employ data-mining techniques used in building recommenders
Build industry-standard collaborative filters using powerful algorithms
Building Hybrid Recommenders that incorporate content based and collaborative fltering

Who this book is forIf you are a Python developer and want to develop applications for social networking, news personalization or smart advertising, this is the book for you. Basic knowledge of machine learning techniques will be helpful, but not mandatory.


Download Hands on recommendation systems with python rounak banik (9781788993753).pdf, available at philipdukes.co.uk for free.